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ON THE COMPUTATIONAL COMPLEXITY OF 
MODULAR SYMBOLS 

DORIAN GOLDFELD 

ABSTRACT. Efficient algorithms are obtained for integrating holomorphic differ- 
ential one-forms along simple geodesic lines on those compact Riemann surfaces 
which are given as quotients of the upper half-plane by a congruence subgroup 
F of SL(2, Z). We may assume that every geodesic line passes through a cusp 
which is unique up to F-equivalence. The algorithms we construct run in poly- 
nomial time in the height of this cusp. 

1. INTRODUCTION AND STATEMENT OF RESULTS 

Let F be a congruence subgroup of finite index in SL(2, Z). Then F acts 
properly discontinuously on r3, the upper half-plane, and this action extends 
naturally to Q U {ioo}. Consider the compactified Riemann surface X = F\D U 

{ioo} U Q of genus g > 0. Let f(z)dz be a holomorphic differential one-form 
on X. For a, ,8 e Q U {ioo} we let {a, fl}r denote the geodesic line joining a 
to fi. Recall that the geodesic lines are either semicircles intersecting the real 
axis at a, ,8, or lines {a + itIt > 0} with a e Q. Modular symbols are period 
integrals 

2ri| f(z) dz, 
{a, fl~r 

and our aim is to provide fast algorithms for their computation. Such com- 
putations are necessary, for example, in the verification of the Taniyama-Weil 
conjecture (see Cremona [2]). If {QI, Q2, . .., Q2g} denote the periods of X, 
then it is known [5, 7], that for a, f e Q U {ioo} 

2g 
(1) 27rij f(z)dz = 2cgQj 

j=1 

where cj lies in the totally real field generated by Q and the Fourier coefficients 
of f(z). It follows that the cj may be determined exactly after a finite amount 
of computation. 

In order to define the complexity of our algorithms, we introduce some simple 
notation. Every rational number a may be written in the form a = a/b, where 
a, b are a pair of relatively prime integers. Define a height function h on Q by 
setting h(a) = max(lal, IbI). Extend h to Q(i) U {ioc} by putting h(ioo) = 0 
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and h(a + i,) = max(h(a), h(Q))) for a, ,8 e Q. We shall use the terminology 
"arithmetic operation" to denote an exact arithmetic operation on Q(i) of type 
a ?t ,8, a, fi or a/fl, and we assume the existence of a machine that can 
perform such operations. Clearly, we may extend the domain of our operations 
to Q(i) U {ioo} . Given a function F: Q(i) U {ioo} -: C and a e Q, we shall 
say F(a) can be computed to within an error e by our machine if after a finite 
number of arithmetic operations it can find a rational complex number c e Q(i) 
such that IF(a) - cl < e. For each e > 0, the complexity of our algorithm 
for computing F(a) is given by an integer C = C(F(a), e) which denotes the 
number of arithmetic operations needed to compute F(a) to within error e. 

For simplicity of exposition, we specialize to the case where 

F=JTO(N)={(a ) e SL(2,Z) c cO(mod N)}, 

and X = Xo(N) = Fo(N)\j U Q U {ioo}. We shall let {a, f} = {a, f}N 
denote an arbitrary geodesic line on Xo(N) with a, , e Q U {ioc}. 

Theorem 1. Let f(z)dz be a holomorphic Hecke differential one-form on Xo(N) 
whose Fourier coefficients are known. Let {a, ,8} be a geodesic line on Xo(N) of 
height H = max(h(a), h(Q))). Fix e > 0, p > 0. Then there exists a constant 
C = c(e) > 0 such that for squarefree N > c, the modular symbol 

2jri f(z)dz 

may be computed to within an error exp(-NP+8/2) (log H) in at most 

N1+P+8 (log H) 

exact arithmetic operations. 

The question remains as to whether Theorem 1 is strong enough to be able 
to exactly determine the coefficients cj (of formula (1)), assuming the periods 
Qj of Xo(N) are known. In this case we say that the modular symbol can 
be "evaluated exactly." Unfortunately, this appears to be an extremely difficult 
problem, since it depends on lower bounds for the periods. If the Jacobian 
variety Jo(N) of Xo(N) contains an elliptic curve E as a factor, and if Q1, Q2 
denote the periods of E, then it can be shown that 

(2) N -N << IQl l, IQ21- 

The stronger estimate 

(3) N`K << IQ, I, IQ21 

for sufficiently large K iS equivalent to a well-known conjecture of Szpiro for 
E (see [3]). At present, lower bounds of the above type for the periods of 
Xo(N) associated to higher-dimensional abelian varieties seem to be completely 
unknown. It seems likely, however, that estimates of type (3) should hold (see 
Lockhart [4]). 

Theorem 2. Let f(z)dz be a holomorphic Hecke differential one-form on Xo(N) 
whose Fourier coefficients are rational and known. Let {a, ,8} be a geodesic line 



ON THE COMPUTATIONAL COMPLEXITY OF MODULAR SYMBOLS 809 

on Xo(N) of height H = max(h(a), h(Q))). Fix e > 0. Then there exists a 
constant c = c(e) > 0 such that for squarefree N > c, the modular symbol 

27ij f(z) dz 
{a PI 

may be computed exactly in at most 

N 2+ (log H) 

exact arithmetic operations. 

If we assume Szpiro's conjecture [3], then Theorem 2 can be improved. 
In this case the number of exact arithmetic operations will be bounded by 
N1+' (logH). The algorithms found run in polynomial time in the height of 
the cusp, but not in polynomial time in the level N. It is probable that the 
number of exact arithmetic operations needed in Theorem 2 should be at most 
(logN)K (logH) for some constant K > 2, but this seems completely out of 
reach at present. 

2. PROOF OF THEOREMS 

Theorem 1 can be proved rather simply in the special case that N is prime. 
The proof is based on the following elementary lemma. 

Lemma 3. Let N be a prime number. Then every g = (U d) e d o(N) may be 
factored in the form 

g = wI *g1w * 2g2 * 92 .. ' 

where 

(iai bi) e FO (N), Wi 
I 

(o 
I ) qN 

with qi, ui e Z, and T < log Ic/log2. 
Proof. Choose an integer u so that 

I I1 uA a' V' 
9 

0O 1 g tcN d) 
with Ia'I < IcNI/2. If Ia'I < Icl, then consider 

(qN I) ( (a'q +c) N d') 

Clearly, we may choose an integer q so that Ja'q + cl < la'I/2 < ... < IcI/2. 
Hence, 

Il -uS I 08 a' b'8 
9 

V 0 l J -qN I c' N d' 
with Ic'I < IcI/2. 

On the other hand, if Ia'I > Icl, then we may choose integers x, y such 
that cx + dy = 1 . In fact x = -b'N- md, y = a' + mc, for any integer m. 
Choose m so that IYI < IcI/2. For this choice, we must have 0 < ImI < N, 
since IcI < Ia'I < INcI/2. Hence, (mi, N) = 1, and by the Euclidean algorithm, 
we can find integers v, z such that xz - vyN = 1 . It follows that 

It -u ta, blo V -zA 
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where vIj < IcI/2 and 

Sa, bi _a' ba X zA 
VN di J cN d J yN v 

Continuing inductively, the proof of the lemma can be completed. 5 

Proof of Theorem 1. The homomorphism 0b: Fo(N) -- HI (Xo(N), Z) given by 

+(g) = {Z, g(Z)} 

is independent of z e r U Q U {ioo}. Moreover, ker(q) is generated by the 
commutators, elliptic and parabolic elements of Fo(N) (see [5]). Following 
[3], we obtain from the functional equation for the Hecke cusp form f (z) for 
g (a ) e Fo(N) that 

27r i A f(z) dz 
0(g) 

(4) 00A(n) (-2imn\ (27ina \(-2idnd] 
=E ( exp (ENI) [exp ( N )- exp( N,)J 
n=I cjcNc 

where 
00 

f(z) = E A(n) exp(27rinz) 
n=I 

is the Fourier expansion of f(z). Since IA(n)l <? np/2+% it is easy to see 
that the integral on the left side of (4) may be computed to within an error 
exp(-NP+-/2) in at most NI+P+8 exact arithmetic operations. 5 

We now give the algorithm for computing the modular symbol 

27rij f(z) dz 

in the case when N is prime. 
Step 1. Determine if {a, fl} is a closed cycle. If it is, find g e Fo(N) such 

that fi = g(a) and immediately continue with Step 2. If it is not a closed cycle, 
go to Step 3. 

To see if g exists, and to find g, we may proceed as follows. For x e 
Q U {ioo}, the Euclidean algorithm allows us to find ax e SL(2, Z) such that 
a,(O) = x. Namely, if x = xl/x2 with (xI, x2) = 1, then ax = (v x) with 
ux2 - vx1 = 1 . If x = ioo, then ax = ( 7o1). - ) Since the stabilizer of O is the 
subgroup ( *1 ), it follows that the element 

It b 1? xle SL(2, Z) 

with b e Z is the most general element that maps x to y. Hence, the existence 
of g e Fo(N) such that ,8 = g(a) is equivalent to the existence of 0 < b < N 
such that 

g=cAd (b I ) 1eFO(N). 
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Step 2. Factor the element g = WI .9I.W2*g2 W, g found in Step 1 
according to Lemma 3. Since the elements wi are in ker(q), it follows that 

27(i] f(z)dz = 271rij f(z)dz, 
{a X A} i~~~~~l 0~(gi) 

where each fq(gj) f(z) dz can be computed by (4). 
Step 3. If {a, fl} is not a closed cycle, let 

{a, } = {a, io} + {io, f}. 

This reduces to the case {a, ioo}, which we may assume is not a closed cycle. 
We may, therefore, apply the formula of Manin ([5, Theorem 3.5]), to get 

(3 - A(2)) f (z) dz = j f(z) dz. 
d 12 {md~ad 

b mod d 

Since each cycle {Ra, 2a + d} above is closed, this reduces the problem to a 
sum of modular integrals over closed cycles which may be evaluated by Steps 1 
and 2. 

If N is not a prime, then the previous algorithm does not work. There seems 
to be no simple analogue of Lemma 3. A more subtle procedure is required. 

Writing {a, ,8} = {O, ,8} - {O, a}, we need only consider {O, a} with 
height h(a) = H. Let 

P-2 P-I PT 

q_2 q- ... - a 

denote the continued fraction convergents to a, where 

P-2 0 P-i 1 Po Po 
q-2 1 q-I 0 qO 1 

It is well known that 

Prqr- I -Pr-lqr (l 1 - < r < r), 

Pr > Pr-I + Pr-2 and qr > qr-I + qr-2, from which it is easy to show that 
-r < log H. It follows that 

T -~ T 

fa} = z{ Pr-I Pr 
} = Ur (?) Ur (_o) 

r= I qr- qr r=i 

where 
U ( (-1 P-lpr Pr-I ) 
(7r-t(_~r-qr qr- Iy 

We obtain 

(5) j0,X af(z)dz = Z f(Ur(z))d(Ur(z)). {0 X ax} ~~r= I 

The problem is reduced to evaluating 

f (a((z)) d (a((z)) , 
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where 

o=Qt u)eSL(2,Z). 

Since f(z)dz is a Hecke differential one-form, it is an eigenfunction of the 
Hecke algebra Si, which is a commutative semisimple Q-algebra generated by 
the Hecke operators Tp (for primes p { N), where 

TP = 0 1 )+ E (p 0) 

and the involutions WM (for MIN), where 

WM (N MW)' M2XW - Nzy = M. 

The WM normalize Fo(N) and satisfy 

WM/M" = WM WM (for (M', M") = 1 and M'M" I N), 

FJWqr = WN=( N 1) 
qrjN 

where the above product goes over all prime powers qr exactly dividing N. 
The action of Sj on f(z)dz is given as follows: 

Tpf(z)dz = f(pz)d(pz) + E E ( ) z) d (Q 1 ) z) 

= A(p)f(z)dz, 

where A(p) is the pth Fourier coefficient of f (z) . Furthermore, 

WMf(z)dz = f(WMz)d(WMz) = AMf(z)dz, 

where the eigenvalue AM is independent of x, y, z, w e Z, since all the 
involutions of type WM (with M fixed) are equivalent under left or right mul- 
tiplication by Fo(N). There is a simple relation between AM and the Fourier 
coefficient A(m). Namely (see [1]), 

Aq = -A(q) 

for primes q IN. In addition, both functions are completely multiplicative with 
respect to MIN. 

Let M1 = gcd(t, N), t = Mltj and N = MM1. It follows that we may 
express 

(t Mu,)(0 1) 
where h, sI, Ul e Z are chosen so that th + Mu1 = u and rh + sI = s . 

Furthermore, 
(Mr SI 

(Nt1 Mu, 0 1 0 1 

where tj = Mt/N is an integer. Hence, 

(6) jf(a(z))d(a(z)) = Am jf () z) d () h ) 
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Let WN= (No) Then 

(O M) WN (-hN I? WW 

from which it easily follows that for any U > 0 

lof (( Mz) d h( Mz) 

(7) JLSL ((0 M )z)d(( M) j) 
(7) ~ + f (N-hN 1 ) z) d W -N 1)Z 

UVN 
MO 

We now consider the second integral on the right side of (7). Let Mh - 

gcd(M, h). Clearly, 

M 0 
m 

_ s8 h M 
(-hN h J N -hN + J 0 J 

Since (N, M) = 1, we may choose 1 such that 

N (M\ 
-l If mod-I. M kMh 

It easily follows from the above matrix identity that 

f (WN (-h 1 z) d (WN -MN ?1)Z 

Uvri 

= 8N)M/Mh J f (z-lMh/M) dz. U vrNV 

Combining (6), (7), (8) yields 
MO 

27i j f(a(z)) d (a(z)) 

00 00 

- AM J Z A(n) exp[-27mny + 27tinh/M] idy 
MVK n=1 

0000 

+ ANAMAMIMh J A(n) exp[-2iiny - 21innlMh/M] idjy. 
uV n=1 

Finally, 
rio 

27i j f(a(z)) d (a(z)) 

(9) = A(fl) exp[-(27 nU/MvfK) + 2iiinh/M] 
n=1 

+ ANAMim exp[-(2lmnMh/UV'K) - 27rinlMh/M]]. 
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Now choose U = OMih. Since 1 < Mh < M < N. it is easy to see that the 
integral on the left side of (9) can be computed to within an error exp(-NP+8/2) 
in at most NI+P+8 exact arithmetic operations. The proof of Theorem 1 now 
immediately follows from (5), since it is only necessary to compute r < logH 
such integrals. 5 

Proof of Theorem 2. It follows from the work of Shimura (see [6, 3]) that if f(z) 
has rational Fourier coefficients, then the modular symbol (for a e SL(2, Z)) 
is 

(10) 27ti f(a(z))d(a(z)) = clQI +c2Q2, 

where c1, c2 e Q and Q1, Q2 denote the real and imaginary periods of an el- 
liptic curve. Moreover, the denominators of cl and c2 are absolutely bounded. 
In view of (8) and the lower bound (2), it is enough to compute (10) to within 
an error exp(-N1+,/2) to be able to exactly determine c1, C2. As shown in the 
proof of Theorem 1, this may be done in N2+- exact arithmetic operations. 
Finally, the modular symbol 27if{, I} f(z) dz is a sum of at most O(log H) 
integrals of type (10). This completes the proof. S 
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